Space Technology Research Grants

Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space

Technologies Completed Technology Project (2014 - 2018)

Project Introduction

Current material technologies limit space exploration and vehicle performance due to often unnecessary mass increase from copper wiring or heavy structural composites. Replacement of these materials to impart lower mass footprints should alleviate this stress and improve equipment efficiency. Fortunately, the discovery of carbon nanotubes in 1991 has lead to the production of strong, highly conductive carbon nanotube fibers that compete with current material platforms. In this proposal, the current challenges associated with assembling carbon nanotubes via dissolution in chlorosulfonic acid will be identified along with prospective studies to surpass the properties of copper and traditional carbon fiber for direct application to space technologies.

Anticipated Benefits

The current challenges associated with assembling carbon nanotubes via dissolution in chlorosulfonic acid will be identified along with prospective studies to surpass the properties of copper and traditional carbon fiber for direct application to space technologies.

Primary U.S. Work Locations and Key Partners

Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space Technologies

Table of Contents

Project Introduction	1
<u> </u>	
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Project Website:	2
Organizational Responsibility	
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destination	3

Space Technology Research Grants

Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space

Technologies Completed Technology Project (2014 - 2018)

Organizations Performing Work	Role	Туре	Location
Rice University	Lead Organization	Academia	Houston, Texas

Primary U.S. Work Locations	
Texas	

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Rice University

Responsible Program:

Space Technology Research Grants

Project Management

Program Director:

Claudia M Meyer

Program Manager:

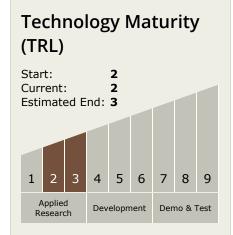
Hung D Nguyen

Principal Investigator:

Matteo Pasquali

Co-Investigator:

Robert J Headrick



Space Technology Research Grants

Scalable Solution Processing of Pristine Carbon Nanotubes for Self-Assembled, Tunable Materials with Direct Application to Space

Technologies Completed Technology Project (2014 - 2018)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.1 Materials
 - ☐ TX12.1.1 Lightweight Structural Materials

Target Destination

Foundational Knowledge

